The Night Sky

03DF1C26-4CA6-4C74-A570-B50BA33464D0.webp
 
Here you go @CELLFISH, only light pollution in this photo is moon rising off to the east and the fact that Saturn (left) and Jupiter (right) are shining through a thin cloud layer. If it was clear, I would have dragged out my small telescope...

1598922228144.webp
 
nice, I saw Jupiter’s moon wit my standard binoculars, WoW... cellfish...

You should be able to see 4 with binoculars, unless they're in front or behind the planet. They're called the Galilean Moons because he was the first to "see" them with his primitive telescope. That scope couldn't discern that Saturn had rings, but he did note he saw the "ears" of Saturn.

The Galilean Moons are: Io, Europa, Ganymede and Callisto in order of distance from Jupiter. Ganymede is the biggest. Europa has a vast supply of liquid water under a planet wide ice cap and could be a candidate for extraterrestrial life.
 
You should be able to see 4 with binoculars, unless they're in front or behind the planet. They're called the Galilean Moons because he was the first to "see" them with his primitive telescope. That scope couldn't discern that Saturn had rings, but he did note he saw the "ears" of Saturn.

The Galilean Moons are: Io, Europa, Ganymede and Callisto in order of distance from Jupiter. Ganymede is the biggest. Europa has a vast supply of liquid water under a planet wide ice cap and could be a candidate for extraterrestrial life.

Saturn ? Rings are from its volcanos? on its moons... cellie...
 
I love it, first The Big Bang, and now, the Not So Big Thud!!

Two black holes merged into a size astronomers have never before seen
pressherald.com/2020/09/02/two-black-holes-merged-into-a-size-astronomers-have-never-before-seen/

By SETH BORENSTEINAssociated PressSeptember 2, 2020
This illustration provided by LIGO/Caltech depicts two black holes of about 66 and 85 solar masses spiraling into each other to form the GW190521 black hole. Gravitational waves from the merger were detected by the LIGO and Virgo observatories in May 2019.

Black holes are getting stranger — even to astronomers. They’ve now detected the signal from a long ago violent collision of two black holes that created a new one of a size that had never been seen before.
“It’s the biggest bang since the Big Bang observed by humanity,” said Caltech physicist Alan Weinstein, who was part of the discovery team.

Black holes are compact regions of space so densely packed that not even light can escape. Until now, astronomers only had observed them in two general sizes. There are “small” ones called stellar black holes that are formed when a star collapses and are about the size of small cities. And there are supermassive black holes that are millions, maybe billions, of times more massive than our sun and around which entire galaxies revolve.

According to astronomers’ calculations, anything in between didn’t quite make sense, because stars that grew too big before collapse would essentially consume themselves, leaving no black holes.

Star collapses couldn’t create stellar black holes much bigger than 70 times the mass of our sun, scientists thought, according to physicist Nelson Christensen, research director of the French National Centre for Scientific Research.

Then in May 2019 two detectors picked up a signal that turned out to be the energy from two stellar black holes — each large for a stellar black hole — crashing into each other. One was 66 times the mass of our sun and the other a husky 85 times the mass of the sun.

The end result: The first ever discovered intermediate black hole, at 142 times the mass of the sun.
Lost in the collision was an enormous amount of energy in the form of a gravitational wave, a ripple in space that travels at the speed of light. It was that wave that physicists in the United States and Europe, using detectors called LIGO and Virgo, captured last year. After deciphering the signal and checking their work, scientists published the results Wednesday in Physical Review Letters and Astrophysical Journal Letters.

Because the detectors allow scientists to pick up the gravitational waves as audio signals, scientists actually heard the collision. For all the violence and drama, the signal lasted only one-tenth of a second.
“It just sounds like a thud,” Weinstein said. “It really doesn’t sound like much on a speaker.”

This crash happened about 7 billion years ago, when the universe was about half its current age, but is only being detected now because it is incredibly far away.

Black hole collisions have been observed before, but the black holes involved were smaller to begin with and even after the merger didn’t grow beyond the size of typical stellar black holes.

Scientists still don’t know how supermassive black holes at the center of galaxies formed, Christensen said, but this new discovery may offer a clue.

Perhaps, like playing Legos, smaller blocks combine to make bigger ones and those combine to make even bigger ones, said Harvard astronomer Avi Loeb, who wasn’t part of the study but said the results chart new astronomical territory.

And indeed the bigger of the two black holes involved in this crash could have been the result of an earlier merger, both Weinstein and Christensen said, further bolstering that theory.

“It’s conceivable that this pair of black holes formed entirely differently, possibly in a dense system with lots of dead stars whizzing about, which allows one black hole to capture another during a fly by,” said Barnard College astronomer Janna Levin, who wasn’t part of the research and is author of the book “Black Hole Survival Guide.”

On the other hand, scientists can’t quite explain how merged black holes, flying around the universe, would meet so many others to merge again and grow ever bigger. It could instead be that supermassive black holes were formed in the immediate aftermath of the Big Bang.
“In astrophysics we’re always faced with surprises,” Weinstein said.
 
Try as I might, I can't grasp quantum physics.
I can comprehend that the gravity of a black hole sucks in all the light that gets near it, but not that there's a halo of a smeared spectrum that is emitted from the thing that is so massive that it sucks in everything.
 
Try as I might, I can't grasp quantum physics.
I can comprehend that the gravity of a black hole sucks in all the light that gets near it, but not that there's a halo of a smeared spectrum that is emitted from the thing that is so massive that it sucks in everything.

Once I get beyond Newtonian Physics I don't have a F-ing clue either...
 
Sat by the fire pit and decided to take a picture of Saturn (L) and Jupiter (R). Sorry @CELLFISH , no skyscrapers photo bombing them...
1599874203907.png


Then made a rookie mistake and grabbed a 3" telescope that I've never used to observe them. Yeah, like I could align and master the basics of a telescope I've never used in the dark, but chit happens...

Couldn't quite get the tracking to work correctly, nor quickly learn the nuances of that scope, but I did get some nice peeks. Could see 3 of the Galilean Moons of Jupiter, along with the major planetary cloud bands, and was able to discriminate Saturn from its rings. Made me swear I'd grab my 8" scope next clear night and do some serious planetary viewing...
 
I had some great views of Saturn years back with my 4.5" refractor in the Catskills.
I think I was on 225x, it was so zoomed in I had to aim ahead of the planet and watch it glide through the field of view.
It would cross in about 4 seconds, that's how zoomed it was - very easily saw the rings.
 
📱 Fish Smarter with the NYAngler App!
Launch Now

Fishing Reports

Latest posts

Latest articles

Back
Top